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One of the possible mechanisms of the electr if icat ion of low-conductivity liquids {liquid hydrocarbons,  
mineral  oils, etc.) flowing through metal  tubes and capil lar ies  is the ox ida t ion- reduc t ion  react ion of impurity 
ions on channel walls [1-5]. This point of view was f i rs t  considered in [2] on the basis of experimental  data 
in [3], where it was shown that when a neutral liquid (N-heptane) flows through a grounded metal capi l lary it 
emerges  positively charged,  and the charging cu r r en t  f rom the end of the capi l lary is steady for  a steady flow 
of liquid. 

In contrast  with [2, 4, 5] we assume here  that the forward ion neutral izat ion react ion rate  is small  in " 
comparison with the inverse react ion ra te .  

1. Statement of the Problem.  In contrast  with conventional approach to the phenomenon of e lec t r i f i ca -  
tion of low-conductivity liquids based on the concept of the generat ion of a charging current  as a result  of the 
removal  of charges  f rom the diffusion part  of the e lectr ic  double layer  by hydrodynamic flow [6], Gavis and 
Koszman [2] present  a new approach which in t e r m s  of chemical kinetics consis ts  in the following. They as -  
sume that at the channel entrance (Fig. ]) the neutral liquid contains positive B+Zl and negative A -z2 impurity 
ions, where z 1 and z 2 a re  the valences of the ions. During the mgtion of the liquid part ial  or complete neu- 
t ra l iza t ion of negative ions occurs  on the tube wall (r =R) as a result  of the revers ib le  react ion 

A "h  -- ~ ~-(z2-m) (1.1) 
hi  

where kf is the rate  constant of ttle forward react ion and k i of the inverse reaction; e-  is the electron,  and 
m ( m -  < z 2) is the number  of e lectrons t r ans f e r r ed  f rom an A-Z2 ion to the electrode.  For m =z2, neutral mole -  
cules A are  formed as a resul t  of the react ion.  

Since at the entrance 2] 0 (x =0) the concentrat ion of A-(z2 -m) ions (or A molecules)  is zero ,  the forward 
react ion will proceed more  rapidly than the inverse near  the entrance.  As a resul t  an excess of positive ions 
is formed in the liquid, i.e., it is e lectr i f ied.  

The boundary-value problem describing the charging of the liquid in react ion (1.1) has the following fo rm:  

div eE = 4 ~ e [ z l n  I - -  z 2 n  ~ - -  (z . .  - -  m)n~], E = --Vlp; (1.2) 

div ik = 0 ( k :  l, 2, 3), i i : - D i V n i ~ -  b i n i E ~ - n l v ,  i ~ :  (1.3) 
:= - -D2vn~ - -  b2nzE -b n~v, i3 : - -Davn3  - -  ~banaE ~ nay(0 ~ r ~ R; 

0 ~ x ~  oo); 

~___ _ _  nO 0 E0(x 0 ) :n  1 -  ,,  n 2 = n 2 ,  n3 = 0 ,  z ln ~  z~n~ (1.4) 

S(r = R): i l  n = O, (i~-~ i3)n -~ O, i~n -- k tn  2 - -  ] Q n 3 ,  ~ = ~0; ( 1 . 5 )  

as x-~- c~ i2n ~_ 0, nJn~ ~- ky/k~ : K .  (1.6) 

Here n i, b i, and D i (i =1, 2, 3) a re ,  respect ively,  the part ial  concentrat ions,  the mobili t ies,  and the diffu- 
sion coefficients of the B+Zl, A -z2, and A-(z2 -m) ions (or the A molecules;  n~ and n2 ~ a re  the constant concen- 
t ra t ions of the B +zi and A-Z2 ions at the channel entrance;  e is the permit t ivi ty of the liquid; e is the charge 
of a proton; T = 1 for z 2 > m, n is the outward normal  to S. 

Equations (1.2) and (1.3) assume that the space charge e[zIn 1 -z2n  z - (z 3 -rn)n3] formed in ~he electr i f icat ion 
process ,  and the e lec t r ic  field induced by it, a re  so small  that they do not affect the velocity distribution of the 
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liquid, i.e., v=vo(0, 0, v(r)) is a given function of coordinates, where v 0 is the velocity on the channel axis. 
The last of Eqs. (1.4) follows from the neutrality of the liquid at the entrance. 

The first of Eqs. (1.5) states that there is no current of positive charges to the earth. The second equa- 
tion represents the equality of the fluxes of A -z2 and A- (z2-m) ions at the channel surface S, which is a con- 
sequence of the fact that each A- (z2-m) (A-Z2) ion can be formed on S only as a result of the forward (inverse) 
reaction (1.1), and that they are not adsorbed on S. The third condition follows from the fact that the differ- 
ence between the number kfn 2 of A=Z2 ions neutralized and the number kin 3 of A-(Z2 -m) ions regenerated on S is 
equal to the influx of A,Z2 (or A-(Z2 -m)) ions. Here it is assumed that (1.1) is a single-stage reaction [7]. The 
potential r = r = const on S, since the channel wall is grounded. 

Conditions (1.6) express the equilibrium of reaction (1.1) at a sufficiently large distance from the initial 
cross section Eo. 

The charging current through an arbitrary cross section Z (x =const) is 

I : e S [zl  i l  - -  z2 i~ - -  (z~ - -  ra) i3] e~dE.  
(1 D7) 

E 

2. Method of Solution. Just as in [2, 5], we make the following assumptions to simplify fur ther  study of 
the problem. Firs t ,  we assume a sufficiently large  average  flow velocity of the liquid so that all quantities 
change much more  slowly along the channel axis then in the radial direction. Hence, derivat ives with respect  
to x can be omitted in the Laplacian A. Second, we assume that the fract ion of converted A -z2 ions is small  in 
compar ison with the unconverted ions in any c ros s  section ~. Under  this assumption the equilibrium constant 
K of react ion (1.1) is small  enough to permit  the use of perturbat ion theory.  Final ly,we assume the equality 
of diffusion coefficients D i =D and mobili t ies b i =b(i =1, 2, 3). 

In accordance  with the perturbat ion method, we seek the solution in the form of se r ies  

0 n ? )  - (~ _ n(1) + n~2) n~ -- n~ -[- n- n ( '  + . . . .  n~ -- -}- "",~ (2.1) 

$ = r + ~(~) + r + . . .  (~ = 1, 2). 

After substituting (2.1) into (1.2)- (1.6), l inearizing,  and t rans forming  to dimensionless variables by the 
formulas  

q~=n~l) /n  ~ ( i = t ,  2,3), n ~  ~176 

qD = ~O)e/4.~en ~ r' = r /R,  x' = x / f l ,  

we obtain 

Here 

at r ~ 1  

~ L ~  = q, Lq3-- • = O, 

Lq - -  5~q - -  • = O; 

at x = O  q = q 3 = O ;  

--  ~ Or Or " 

q = z l q  1 - z ~ q ~ - ( z  2 - m )  q3; L - - - - - r -~rr -~r  ' t  o ~ . 

~ = R2/DT2 (To_= e/4uebn~ 5 2 = R~'/D'c ('~ = e/4nebn~ 

z = voTUD; K j =  k fR/D;  K i =  k~R/D 

(2.2) 

(2.3) 

(2.4) 

and pr imes  on the dimensionless  coordinates have been omitted. 

We assume a Poiseuille velocity profile v(r) = 1 - r  2. This approximation is valid when the charac te r i s t i c  
length for the development of a parabolic  profile l ~0.16v0R2/y [8], where y is the kinematic viscosi ty,  is appre-  
ciably shor te r  than the charac te r i s t i c  channel length L over which the charging Of the liquid takes place. 
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We solve  p r o b l e m  (2.2)-(2.4) by taking Lap lace  t r a n s f o r m s .  

q. = ~ q (r, x) e-PXdx 
O 

Then we  obtain the  fol lowing p r o b l e m  fo r  the  t r a n s f o r m s  : 

- -  L(~, = q.,  Lq .  - -  [52 + ~ (l - r2)] q,  =~ 0, Lqa. - -  ~ (t - -  r 2) q3, = O, 

dq, ( a~ --K~q~,)=m~ ( r = t ) ,  
,~r + ~ ~ = "~ ~:' 7 ;  

~ 2  ~ •  (2.5) 

(2.6) 

which we so lve  by mak ing  the  subs t i tu t ions  
_~/o 

q. = Ale " "(I) (al, 1, z), qa. = A2e-Z/zgi) (a2, t, z), 
a l =  t / 2 +  (62+ [f')l'4i~, a2 == I / 2 +  [~/4i, z = i~r"5 

w h e r e  r  1, z) is the  confluent  h y p e r g e o m e t r i c  funct ion [9]. After  d e t e r m i n i n g  the  cons tan t s  A t and A 2 f r o m  
(2.6), and tak ing  the  i n v e r s e  Lap lace  t r a n s f o r m s ,  we  obtain  

p0-I-ico i~( 1--r 2 ) 
mS,K] i ~ i~JH(~)e ~ r ~, i~r 2) 

eVXdp (Re pa > 0 ) ,  
pO--ia~ 

[ ] ~2~ ~(~-~ 
tl~ (6, ~) = i~ 2al CP (a~ + t,  2, i[~) - -  qg (a~, 'l, i[~) - -  " ~  3 e " 2 (~((~l,i, i~)d~, 

0 

(2.7) 

H2(KI, fi) = KiO(~z..., 1, i~) + i[IH(~). 

Using the  t h e o r e m  of r e s i d u e s  [9], we  can  w r i t e  {2.7) in the  f o r m  

q= T ~  1 ~ ~ (1)(ahn, l, --phnre)e u ) 
. I ( l - - r  2) I o(Sr) rdr h=l  n=l  

o 

(2.8) 

w h e r e  a i n  = 1 / 2 -  (62-p~n)/4pln;  C~2n = 1/2  +P2n/4; Pin and P2n a r e  the pos i t i ve  s i m p l e  r o o t s ,  n u m b e r e d  in a s c e n d -  
ing o r d e r ,  of the  fol lowing equa t ions :  

1 Pln(~_l) 

62 f " hi (Pin) ~ Hi  (6, ipi~) = Pi ,  [ --  2~.i~(I) (al~ -1- t, 2, - -  Pi~) + �9 (aln, 1, - -  Pi~)] - -  - ~ .  e (I) (ain, i, - -  Pl,,~) d~ = 0; (2.9) 
0 

h2~2,~) ~ H~.(Ki, ip2~ ) = K~O(al,~, i ,  --P2~) --P2'~[2a2dI)(a~+ 1, 2, --P2,) - -  r i, - -  P2~)] = 0. (2.10) 

The coe f f i c i en t s  a i n  and a2n a r e  found in the f o r m  

8KIH (ipln) 8K~H (iP2n) 
a]7~ = hi (Pin) He (Ki, ~Pln) a2~t H 1 (5, ip2~ ) h 2 (pr ( 2 . 11 )  

w h e r e  p r i m e s  denote  d e r i v a t i v e s  wi th  r e s p e c t  to  Pin and P2n r e s p e c t i v e l y .  

U s i n g  (1.7), and tak ing  account  of (2.8), we  find the  cha rg ing  c u r r e n t  

-= - -  - -  - -  . - -  " '"  X ; anexp ~ x (2.12) 
n~ l  Z;0R~ VO~2 

! m~en~voR2K, bn = (2.13) I~  = -5s . an ~ a l n C l n ;  a2ne2n, 

! 

Cm~:= t ~ ( l .  ~)exp (P~n (~__ t))(1)(ct~n , t , -  phn~)d~ 
O 

(k = i, 2, n =  i , 2 , 3  . . . .  ). 

3. Resu l t s  of N u m e r i c a l  Ca l cu l a t i ons .  Equa t ions  (2.9) and (2.10) show tha t  the  Pin depend only on the  
p a r a m e t e r  6 z, and the  P2n on K i. The r e s u l t s  of n u m e r i c a l  ca l cu la t ions  of t h e s e  dependences  p lo t ted  in F igs .  2 
and 3 show that  as  5 - - 0  the  roo t s  Pin a p p r o a c h  cons tan t  va lues  (Pll ~ 5 . 0 ,  P12 ~ 9 . 1 ,  P13 - -12 .5 ) ,  w h e r e a s  as  6 
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TABLE 1 

6 z 1 30 50 70 100 

b 1 
bo. 
b3 
a 1 

0,835 
0,97 
0,014 

0.28.10 -r' 

0,836 
0,095 
0,014 

0,28-10 -4 

0,83t 
0,095 
0,0i4 

0,t5.t0-3 

0,822 
0,095 
0,014 

--0,0013 

0,808 
0,094 

0,013 
0,5.t0-~ 

i 

0 100 Z~?O ~ 2 o 4 8 ~ 

Fig. 2 Fig. 3 

increases ,  they increase;  for 6> 10 we have Pll ~6 (for 62 =1, 10, 50, and 100, Pit =5.16, 5.97, 8.72, and 11.2, 
respect ively) .  The roots  Pzn also increase  monotonically with increasing Ki, but, in contras t  with the previous 
case, approach constant values as K i ~ o o  Thus, for Ki_~40, the P2n ( n = l ,  2, 3) change by a f ract ion of a pe r -  
cent, and the i r  values for K i =10 and Ki =40 differ by 3-470 (for K i =10, P21 =2.51, P22 =6.32, P23 =10.12; for  K i = 
40p P2i =2.65, P22 =6.59, P23 =10.55). 

The coefficients a n and b n in ser ies  (2.12) found by using these numerical  values in Eqs. (2.11) and (2.13) 
are  listed in Table 1. Calculations showed that the b n are  positive and decrease  rapidly with increasing n (for 
n = l ,  2, 3 approximately by an o rder  of magnitude when n increases  by unity (Table 1)); the coefficient bi ,which 
makes the main contribution to the ser ies  sum, dec reases  slowly and monotonically with increasing 6 (the values 
of b l for  62 = 1 and 62 = 100 differ by 270). The coefficients a n may change sign, but the i r  absolute values are  
small for 62 -< 100-. lanl << b n {n = ], 2, 3). Calculations also showed that for  n =1, 2, 3 the absolute values of the 
a n can be of the same order  of magnitude. 

Thus, for 62 ~ 100 and K i ~40, the express ion for the charging current ,  to within t e r m s  0(10-3), can be 
wri t ten in the form 

I = I~ t -- ~ b~ exp 2Q x 

where ~, = (v/2)v0 R2 is the liquid flow rate;  P~l =6.7; P~2 =43.5; p2 s = 111. 

Table 1 shows that as the pa rame te r  6 is increased,  the coefficients b n decrease ,  and the [an[ increase .  
Thus, as 6 - ~  one might assume that the ser ies  with the coefficients a n will play the main role in Eq. {2.12) 
for  the charging current .  We could not tes t  this assumption by numerical  computer  calculations,  however,  be-  
cause of the poor convergence of the se r ies  for  the confluent hypergeometr ic  function and the presence  of the 
rapidly varying exponential fac tor  in the integrands in (2.9) and (2.13). On the other hand, for  very large 6 the 
condition for  the asymptot ic  convergence of (2.1), which can be wri t ten in the form ~K<< 1, is violated, and t h e r e -  
fore the asymptot ic  solution obtained f rom (2.7) as 6 ~ has no meaning. 

Thus, the analysis given is valid for sufficiently small  equilibrium constants K << 1, and Ki, and 62<<K -2. 

Analysis of the Solution. Equation (3.1) shows that the charging current  increases  monotonically with in- 
creasing flow ra te  Q, and for small  values of Q {Q << 2~rp~3Dx ) it var ies  l inear ly  {I=emn~ In the limit as 
Q ~  the cur rent  approaches saturat ion:  

b 2 b 2 I ~ I o ~ -~  ( b j p ~  -~ ~P22 + ~P~) e m n ~ D K x .  

We note that this dependence of I on the average  velocity of l aminar  flow in a capil lary is observed in 
experiments [3] (for turbulent flow I ~v01~/8 at low velocit ies,  and I~  v07/s at high velocities [3]). The depen- 
dence of I on the [on concentrat ion at the capi l lary entrance is general ly  t reated as a dependence on conductivity. 
In this sense (3.1) gives a l inear  law, which is observed in experiments  at sufficiently low conductivity [3]. 
t towever, in the light of modern concepts of the conductivity of liquid die lect r ics  [10, 11], a steady current  is 
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not ensured by impuri ty  ions, but by injection (or regenera t ion  [10]) p r o c e s s e s  at the e l e c t r o d e - l i q u i d  eontaet ,  
which a re  de te rmined  by the physical  and chemical  p rope r t i e s  of the e lec t rode ,  the liquid, and the impur i ty  
eomponent.  The las t ,  according to data on e lec t roconveet ive  flows, mus t  be neutral  [11]. Thus,  all one can 
say is that the conductivity of a neutra l  liquid is propor t ional  to the ion concentrat ion in it. Therefore ,  to ex-  
plain the exper imenta l ly  observed  dec r ea s e  in the charging cur ren t  with an inc rease  in conductivity for  suff i -  
eiently high values of them,  it is n e c e s s a r y  to eons tder  the interact ion of the e lec t rode  su r face  not only with 
the impur i ty  ions, but a lso  with the neutral  impur i ty  component.  Thus,  for  a sufficiently high concentrat ion 
e x of impur i ty  X (i.e., high conductivity), t he i r  adsorpt ion  on the cap i l l a ry  sur face  can lead to a slowing down 
of the ra te  of neut ra l iza t ion  of negative ions, i .e . ,  to a dec rease  in the charging cur ren t .  Analytically this in- 
dicates that  for  sufficiently l a rge  c x the l imit ing charging cur ren t  I~ becomes  a monotonical ly  decreas ing  rune- 
t ton of e x.  These  a rguments  a r e  conf i rmed exper imenta l ly  in [3] where  it was  shown that as long as a< % the 
l imit ing cur ren t  I~ r e m a i n s  constant as cr is inc reased ,  and begins to d e c r e a s e  only for  sufficiently l a rge  (~ > %. 
F r o m  a quanti tat ive point of view this  can be descr ibed  in the following way.  If we a s s u m e  that  on that par t  of 
the sur face  where  X was adsorbed the neutra l iza t ion of negative tons (1.1) does not occur ,  the th i rd  condition 
in (1 ~ takes  the fo rm 

i ~ n  = (1  - -  s  2 - -  k~n3),+ 

where  ~t is the a r e a  occupied by the adsorba te  X pe r  unit a r ea  of the cap i l l a ry  sur face .  For  example ,  if ad -  
sorpt ton is descr ibed  by the Langmulr  i so the rm,  X =fl Cx/(1 +flCx), where  fi is a physical  constant depending 
on the e lec t rode  m a t e r i a l  and the kind of impur i ty  X. In this case  the charging cur ren t  will  a lso  be de te rmined  
by (2.12), where  I+o = 1/2 mlr (1-X)en~v0R~K. Since c x and )t a r e  propor t ional  to the conductivity of the iiquid, 
as a - - 0 ,  X-*0, and as a ~ m ,  X--*I. There fo re ,  for  smal l  conducttvi t ies the charging cur ren t  va r i e s  l inea r ly  
with ~, while for  l a r g e  conductivi t tes it d e c r e a s e s  with increas ing  ~. 

The modern  point of view on the conductivity of liquid d ie lec t r i cs  makes  it poss ib le  to p ropose  a funda- 
menta l ly  different e lec t r i f ica t ion  m e c h a n i s m .  Thus,  if the e lec t rode  a toms (molecules) M mani fes t  posi t ive 
or  negative e lec t ronegat iv i ty  [12] with r e spec t  to the liquid molecu les  A (impurity X), posi t ive  or  negative ions 
may  be fo rmed on the e lec t rode  su r face  which m i g r a t e  into the depths of thel tquid  by convection o r  diffusion 
and e lec t r i fy  it. This m e c h a n i s m  of ion fo rmat ion  on the e lec t rode  sur face  is based  on the concept of the con-  
ductivity of liquid d ie lec t r i cs  in [13]. 

It follows f r o m  (3.1) that  for  l a rge  enough x (x>>2Q/vp2~D) the charging cur ren t  is independent of the 
length of the cap i l l a ry  and is equal to  I = I ~  =emn~QK. The c h a r a c t e r i s t i c  length L (electr i f icat ion length) over  
which the l imit ing cur ren t  I can be reached  is es t imated  as L =v0R2/p~l. For  typica l  values  D =10 -5 cmU/sec 
under the conditions of the exper imen t s  with heptane [3] (v 0 =100 c m / s e c ,  R=0.016 cm),  we have L=400 cm.  
Such l a rge  values of the e lec t r i f ica t ion  length can be accounted for  as follows. The e lec t r i f ica t ion  p r o c e s s  
ceases  when reac t ion  (1.1) comes  to equi l ibr ium.  This equi l ibr ium is reached  when the concentra t ion n 3 of 
A-(Z2 "m) ions becomes  uni form over  the whole volume and equal to n 3 =Kn~. Within the f r a m e w o r k  of the ap-  
proximat ion  considered,  this p roce s s  is de te rmined  by diffusion only (2.2). For  high liquid veloci t ies  (v0-~ 100 
c m / s e c )  the convective flux is apprec iably  l a r g e r  than the diffusion flux, which also leads  to l a r g e r  values of 
L. The sma l l e s t  length L m for  which significant e lec t r i f ica t ion  ([~ 0.1 I~) is poss ib le  is es t imated  as L m = 
v0R2/p2~D. For  the values of v0, R, and D given above we have L m =25 cm.  We note that  in exper imen t s  [3] 
the length of cap i l l a r ies  in which apprec iab le  e lec t r i f ica t ion  was  observed  was  4-40 cm,  which ag ree s  with the 
above e s t ima te .  

Thus, for  low conductivity the re  is qual i tat ive ag reemen t  of (3.1) with the exper imenta l  data of [3]. For  a 
quantitative t e s t  of (3.1) and quali tat ive ag reement  for  high conducttvi t ies ,  fu r the r  expe r imen ta l  r e s e a r c h  is 
n e c e s s a r y  to de te rmine  the components  of the reac t ion  (1.1), to m e a s u r e  the reac t ion  r a t e  constants  (equilib- 
r ium constants  K), and to study the ro le  of neutra l  impur i t i e s .  
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I N I T I A L  A S Y M P T O T E  

O F  T H E  : P R O B L E M  O F  

ON A P L A N E  

A.  A. K o r o b k i n  

T O  T H E  S O L U T I O N  

D R O P L E T  I N C I D E N C E  

U DC 532.6 : 532.581 

The initial s tage of col l is ion of a spher ica l  droplet  on a solid plane is considered,  it is a s sumed  that the 
droplet  liquid is ideal and incompress ib le ,  and that sur face  tension and external  m a s s  fo rces  a r e  absent .  

This p rob lem is c lose ly  re la ted  to that  of ent ry  of a blunt body into a liquid, which was  f i r s t  considered in 
[1]. The method for  calculat ion of the r e s i s t i v e  fo rces ,  developed in [1], is based  on the assumpt ion  that the 
veloci ty dis t r ibut ion on the f r ee  sur face  at each moment  is the s ame  as that obtained d i rec t ly  a f t e r  col l is ion 
of a floating plate of the s ame  d imens ions .  

These  p rob l ems  have the following unique fea tu res :  1) the flow region fit is unknown; 2) the contact line 
between f r ee  liquid su r face  and the solid mus t  be de te rmined  at the boundary of the flow region; 3) s ingular i t ies  
may  appear  in the solution on this  l ine.  

A new approach to p rob lems  of this kind is the introduction of Lagrangian  coordinates  [2, 3], in which the 
flow region is fixed. 

1. At t i m e  t =0 a liquid sphere  of radius  a is tangent upon a solid plane,  which moves  along the z axis at 
velocity v. We mus t  find the liquid motion which then occurs .  In the space  fo rmed  by Lagrangian Car t e s i an  
coordinates  ~, 77, ~ the region occupied by the liquid is known, being a sphere  of radius a with cen te r  at the 
origin.  We denote this  region by ~20. The va r iab les  x, y, z denote the cor responding  Euler  coordina tes ,  F is 
the f r ee  su r face  of the liquid, and X is the contact spot between droplet  and solid plane. The Euler  equations,  
wr i t t en  in Lagrangian  coordinates ,  have the f o r m  [3] 

* r t Moxtt  -7"~-V~p -- 0, detM 0 = lin -Q0 (1.1) 

with boundary conditions PIF  =0, ztl Z = v and initial conditions xl t=0 = ~, xt l t=0,  where  x = (x, y, z); ~ = (~, ~, 
~); M0=0(x)/,~(g); M~' is the ma t r ix  conjugate to M0 and p is the p r e s s u r e .  The p rob lem is a complex one be -  
cause of its nonl inear i ty  and the exis tence of the unknown line on the sphere  boundary ~20, dividing F and Z. 

2. We will l i nea r i ze  Eq. (1.1) for  the initial r e s t  s ta te ,  keeping t e r m s  of ze ro th -  and f i r s t - o r d e r  s m a l l -  
ness  in d i sp lacement .  Fo r  the l inear ized  p rob lem we can introduce a d i sp lacement  potential  r 77~ ~, t), 
which in view of the continuity equation, will be a function harmonic  in ~20. F r o m  the momen tum equationfol lows 
that 

p = - -7~t t  (2.1) 
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