ELECTRIFICATION OF LOW-CONDUCTIVITY LIQUIDS
IN LAMINAR FLOW THROUGH TUBES
AND CAPILLARIES

A. 1., Zhakin UDC 532.54:541.13

One of the possible mechanisms of the electrification of low-conductivity liquids (iquid hydrocarbons,
mineral oils, ete.) flowing through metal tubes and capillaries is the oxidation—reduction reaction of impurity
ions on channel walls [1-5]. This point of view was first considered in [2] on the basis of experimental data
in [3], where it was shown that when a neutral liquid (N-heptane) flows through a grounded metal capillary it
emerges positively charged, and the charging current from the end of the capillary is steady for a steady flow
of liquid.

In contrast with [2, 4, 5] we assume here that the forward ion neutralization reaction rate is small in -
comparison with the inverse reaction rate.

1., Statement of the Problem. In contrast with conventional approach to the phenomenon of electrifica~
tion of low-conductivity liquids based on the concept of the generation of a charging current as a result of the
removal of charges from the diffusion part of the electric double layer by hydrodynamic flow [6], Gavis and
Koszman [2] present a new approach which in terms of chemical kinetics consists in the following. They as-~
sume that at the channel entrance (Fig. 1) the neutral liquid contains positive B*%1 and negative A™22 impurity
ions, where z; and z, are the valences of the ions. During the motion of the liquid partial or complete neu-
tralization of negative ions occurs on the tube wall (¢ =R) as a result of the reversible reaction

— & —(zy~m
A7 —me L4, (1.1)
kg

where kg is the rate constant of the forward reaction and k; of the inverse reaction; e” is the electron, and
m (m=2z,) is the number of electrons transferred from an A™%2 ion to the electrode. For m =z,, neutral mole-
cules A are formed as a result of the reaction.

Since at the entrance Z; x =0) the concentration of A"(me) ions {or A molecules) is zero, the forward
reaction will proceed more rapidly than the inverse near the entrance. As a result an excess of positive ions
is formed in the liquid, i.e., it is electrified.

The boundary-value problem describing the charging of the liquid in reaction (1.1) has the following form:

div eE = 4melzn, — z,ny — (2, —m)ngl, E = —y; (1.2)
divig =0 (k=42 3),i,=—Dyn+ bnE + nyv, i, = (1.3)
= —Dyyn, — by B+ ngv, i3= —Dgyn; — ybansE + nev(0 << r < R;
0z oo
Dol = 0):n,=ny, n,=n’, ng =0, z;n)= z,n; .
Sr=R): i;n = 0, (i,4 ign = 0, n = kmy — Ky, b = y: - as)
as &> 00 i2n = O, ??,3/?12 = ]ff/]i‘i = K (1.6)

Here 1y, bi, and Dj @ =1, 2, 3) are, respectively, the partial concentrations, the mobilities, and the diffu-
sion coefficients of the B*?1, A22, and A~%2™™) jons (or the A molecules; n and n) are the constant concen-
trations of the BY?%1 and A™% ions at the channel entrance; € is the permittivity of the liquid; e is the charge
of a proton; y=1 for z, > m, n is the outward normal to S.

Equations {1.2) and (1.3) assume that the space charge elzyn —z,n, — (z; —m)n;] formed in the electrification
process, and the electric field induced by if, are so small that they do not affect the velocity distribution of the
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liquid, i.e., vy=v,(©0, 0, v{r)) is a given function of coordinates, where v; is the velocity on the channel axis.
The last of Eqs. (1.4) follows from the neutrality of the liquid at the entrance.

The first of Eqs. (1.5) states that there is no current of positive charges to the earth. The second equa-~
tion represents the equality of the fluxes of A7%2 and A_(me) ions at the channel surface S, which is a con-
sequence of the fact that each A~ @) (A7%2) {on can be formed on S only as a result of the forward (inverse)
reaction (1.1), and that they are not adsorbed on S. The third condition follows from the fact that the differ-
ence between the number ken, of A~%2 jons neutralized and the number kijn, of A~(Z3-10) jong regenerated on S is
equal to the influx of A% (or A~(% -m)) ions, Here it is assumed that (1,1) is a single-stage reaction [7]. The
potential ¥ = §, = const on S, since the channel wall is grounded.

Conditions (1.6) express the equilibrium of reaction (1.1) at a sufficiently large distance from the initial
cross section Z.

The charging current through an arbitrary cross section T & =const) is

(1.7)

T=e (2,1, — 2,0, — (2 — m) 1] exd.
2

2. Method of Solution. Just as in [2, 5], we make the following assumptions to simplify further study of
the problem. First, we assume a sufficiently large average flow velocity of the liquid so that all quantities
change much more slowly along the channel axis then in the radial direction. Hence, derivatives with respect
to x can be omitted in the Laplacian A. Second, we assume that the fraction of converted A™%2 ions is small in
comparison with the unconverted ions in any cross section . Under thisassumption the equilibrium constant
K of reaction (1.1) is small enough to permit the use of perturbation theory. Finally,we assume the equality
of diffusion coefficients D; =D and mobilities bj =b({ =1, 2, 3).

n accordance with the perturbation method, we seek the solution in the form of series

0 1 2} 2]
ni=ni+n§)+n§°—f—...,nszng)—[—ng’)-{—...z 2.1)

b=+ PP LT 4 (=1, 2)

After substituting 2.1) into (1.2)-(1.6), linearizing, and transforming to dimensionless variables by the
formulas ’
g = ngl)/no (i =1,2, 3)7 n’ = zlncl, + zzng,/
¢ = VYVe/dnen®, v’ =r/R, 2’ =x/R,

we obtain
—Lg = q, Lgs— %v(r)dg/dx = 0, 2.2)
Lg — 8% — xw(r)dg/doz = O;
at =0 g = g3= O; (2.3)
rmt g% g ) —m @.4)
ar= or or ! I ids | = 7 .
Here
1 8 o
9=zlg1—zzg2——(z2—~m)q3; L= — 5 T

82 = R/ Dr, (v,=—elbnebnl); 8 = R¥Dt (v = elbnebn?);
% = VoR/D; K;= k;R/D; K;= k;R/D

and primes on the dimensionless coordinates have been omitted.

We assume a Poiseuille velocity profile v(r) =1—r?, This approximation is valid when the characteristic

length for the development of a parabolic profile l~0.16v0R2/V [8], where v is the kinematic viscosity, is appre-
ciably shorter than the characteristic channel length L over which the charging of the liquid takes place.



We solve problem 2.2)-2.4) by taking Laplace transforms.
gy = Sq(r, z)e Pdx
0

Then we obtain the following problem for the transforms:

— Loy =gy, Lgy — 8+ —7))qe =0, Lgg — P (1 —7)g5, =0, P2=up; 2.5)
» d 82 dq.
L (K,-é - K,-q3*) =m—2 (r=1), 2.6)

which we solve by making the substitutions

0y = A0 (@, 1, 2),  gor = 4, 72D (a1, 1, 2),
o= 1/2+ (8% B2/4i, oy= 1/24 B/4i, z = ipr%,

where &(@, 1, z) is the confluent hypergeometric function [9]. After determining the constants Ay and A, from
(2.6), and taking the inverse Laplace transforms, we obtain

py+ico ip(1—r2)
mik; 1 BEBe 0w, 1 i) @.7)
j PH 5, B H, (K, B) e dp (Re p, > 0),

H(ﬁ) == 2a2q)(g'2+ 17 2’ lﬁ) - (D(OL.Z, 11 lﬁ)y

& 2ai

po——ioa

52 1 ipa-%)
H0.0)= 820,00+ 4,20~ 01, ®) |- Tl 7 0188,

4

Hy(K;, B) = K, D(a,, 1, if) + iBH(P).

Using the theorem of residues {9], we can write 2.7) in the form
Prn; , -pz
T(r-—1) kn

mGzK/ I.(8r) G .
g=—| " -2 }_: e O(akn, &, ~prare ~ ] 2.8)
: k g (=) 1, (8r) rar "=t 7

0

where oy =1/2~(6* =pin)/4pin; ®n=1/2 +pyn/4; pin and pyy are the positive simple roots, numbered in ascend-

ing order, of the following equations:
1 Pin

")
h’l (pln) == Hl (5! lpln) = Pin [_ 20"'117.(1) (aln + 11 2a - pln) + CD (alnv 11 - Pm)] - ‘%’5’9 (D (aln, 1, - Plng) dE = O; (2 '9)

0
h‘z(pzn) = Ifz(Kiy ip2n) = Kiq)(am, 1, ——pgn) —Peon [2a2n(p(°“zn+ 1’ 27 '—Pzn) - CD(OL.M, 11 - P2n)] =0. (2-10)
The coefficients ayy and ayn are found in the form
8K H (ipyn) 8KH (ipay)

Ayp = =7 - Gyp = . 2.11)
Ry (Pyn) H oy (Ko i910) ’ H, (8: ipyn) by (Pon) ’

where primes denote derivatives with respect to pyy and pyn respectively.

Using (1.7), and taking account of 2.8), we find the charging current

o p.D - piD
I=T.01—Ya exp(——li_;—x‘)—-v b exp(—- m x)], 2.12)
[ ;::1 " ENG n:ll " v032 :
‘[°° = . ’nnenngRgK’ ap = alnéln» bn == QanCan, (2 .13)

)

F)

(o

Py
Chrn == ‘_Z

(4 — &) exp (22 € — 1) D (o, 1, — puo)
E=1,2n=1,23,...).

3. Results of Numerical Calculations. Equations 2.9) and 2.10) show that the Pin depend only on the
parameter 6%, and the pon On Kj. The results of numerical calculations of these dependences plotied in Figs. 2
and 3 show that as 6 —0 the roots pyy approach constant values (py; —5.0, pyy —9.1, py3 —12.5), whereas as &
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TABLE 1

s | ! 3 | w0 70 100
by 0,835 0,836 0,831 0,822 0,808
b, 0.97 0,095 0,095 0,095 0,094
by 0,014 0,014 0,014 0,014 0,013
ay 1 0.28- 1073 0,28-10™4 0,15-1072 —0,0013 0,5-107¢
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increases, they increase; for 6> 10 we have pyy ~6 (for 6’ =1, 10, 50, and 100, py; =5.16, 5.97, 8,72, and 11.2,
respectively). The roots p,; also increase monotonically with increasing K;, but, in contrast with the previous
case, approach constant values as K; —«. Thus, for K; =40, the pyn (0=1, 2, 3) change by a fraction of a per-
cent, and their values for Kj =10 and Kj =40 differ by 3~4% (for Kj =10, py; =2.51, pyy =6.32, pyg =10.12; for K; =
40, pyy =2.65, pyy =6.59, py; =10.55).

The coefficients gy and b, in series (2,12) found by using these numerical values in Eqs. 2.11) and 2.13)
are listed in Table 1. Calculations showed that the b, are positive and decrease rapidly with increasing n (for
n=1, 2, 3 approximately by an order of magnitude when n increases by unity (Table 1)); the coefficient by, which
makes the main contribution to the series sum, decreases slowly and monotonically with increasing 4 the values
of by for 8 =1 and & =100 differ by 2%). The coefficients a, may change sign, but their absolute values are
small for 8 =100: |ay| <by =1, 2, 3). Calculations also showed that for n=1, 2, 3 the absolute values of the
ay, can be of the same order of magnitude.

Thus, for * =100 and Kj =40, the expression for the charging current, to within terms 0(107%), can be
written in the form

3 ; P g D
I=1I, [1 - };11;,, exp (‘_ e x)] (1o = emn3QK),

where @ = (1/2)v(R? is the liquid flow rate; p}; =6.7; pl, =43.5; p3, =111,

Table 1 shows that as the parameter & is increased, the coefficients by decrease, and the |ay| increase.
Thus, as §-» one might assume that the series with the coefficients ap will play the main role in Eq. 2.12)
for the charging current. We could not test this assumption by numerical computer calculations, however, be~
cause of the poor convergence of the series for the confluent hypergeometric function and the presence of the
rapidly varying exponential factor in the integrands in (2.9) and 2.13). On the other hand, for very large 4 the
condition for the asymptotic convergence of (2.1}, which can be written in the form 6K« 1, is violated, and there~-
fore the asymptotic solution obtained from @2.7) as 8- has no meaning.

Thus, the analysis given is valid for sufficiently small equilibrium constants K <1, and Kj, and 6* <K%,

Analysis of the Solution. Equation (3.1) shows that the charging current increases monotonically with in-
creasing flow rate Q, and for small values of Q @<« 21rp§3Dx) it varies linearly (I=emn‘2)KQ). In the limit as
Q-+ the current approaches saturation:

I—+1I,= '721 (b.lpgl + bngz + bspgz) emn}DKz.

We note that this dependence of I on the average velocity of laminar flow in a capillary is observed in
experiments [3] for turbulent flow 1~v,1%/8 at low velocities, and I~v,"/® at high velocities [3]). The depen-
dence of T on the ion concentration at the capillary entrance is generally treated as a dependence on conductivity.
In this sense (3.1) gives a linear law, which is observed in experiments at sufficiently low conductivity [3].
However, in the light of modern concepts of the conductivity of liquid dielectrics [10, 11}, a steady current is



not ensured by impurity ions, but by injection for regeneration {10]) processes at the electrode —liquid contact,
which are determined by the physical and chemical properties of the electrode, the liquid, and the impurity
component. The last, according to data on electroconvective flows, must be neutral {11]. Thus, all one can
say is that the conductivity of a neutral liquid is proportional to the ion concentration in it. Therefore, to ex-
plain the experimentally observed decrease in the charging current with an increase in conductivity for suffi-
ciently high values of them, it is necessary to consider the interaction of the electrode surface not only with
the impurity ions, but also with the neutral impurity component. Thus, for a sufficiently high concentration
ey of impurity X (i.e., high conductivity), their adsorption on the capillary surface can lead to a slowing down
of the rate of neutralization of negative ions, i.e., to a decrease in the charging current. Analytically this in-
dicates that for sufficiently large cy the limiting charging current 1, becomes a monotonically decreasing func-
tion of cgx. These arguments are confirmed experimentally in [3] where it was shown that as long as o< o, the
limiting current 1,, remains constant as o is increased, and begins to decrease only for sufficiently large o > oy,
From a quantitative point of view this can be described in the following way. If we assume that on that part of
the surface where X was adsorbed the neutralization of negative ions (1.1) does not occur, the third condition
in (1.5) takes the form

in = (1 — AMkmy — king),

where A is the area occupied by the adsorbate X per unit area of the capillary surface. For example, if ad-
sorption is described by the Langmuir isotherm, A =g cy/ (1 +8cy), where § is a physical constant depending
on the electrode material and the kind of impurity X. Tn this case the charging current will also be determined
by @.12), where [ =1/2mn (L —A)en)v,R’K. Since cx and A are proportional to the conductivity of the liguid,

as 0—0, A—0, and as 0—=, A—~1. Therefore, for small conductivities the charging current varies linearly
with o, while for large conductivities it decreases with increasing o.

The modern point of view on the conductivity of liquid dielectrics makes it possible to propose a funda-
mentally different electrification mechanism. Thus, if the electrode atoms (molecules) M manifest positive
or negative electronegativity [12] with respect to the liquid molecules A (impurity X), positive or negative ions
may be formed on the electrode surface which migrate into the depths of theliquid by convection or diffusion
and electrify it, This mechanism of ion formation on the electrode surface is based on the concept of the con-
ductivity of liquid dielectrics in [13].

It follows from (3.1) that for large enough x (x> 2Q/7rp§1D) the charging current is independent of the
length of the capillary and is equal to I=T, =emn‘2)QK. The characteristic length L (electrification length) over
which the limiting current I_ can be reached is estimated as L =v0R2/p§1. For typical values D=107° c¢m?/sec
under the conditions of the experiments with heptane [3} (v;=100 cm/sec, R=0.016 cm), we have L=400 cm.
Such large values of the electrification length can be accounted for as follows. The electrification process
ceases when reaction (1.1) comes to equilibrium. This equilibrium is reached when the concentration ny of
A~#™) jons becomes uniform over the whole volume and equal to n, =Kng. Within the framework of the ap-
proximation considered, this process is determined by diffusion only (2.2). For high liquid velocities (v,= 100
cm/sec) the convective flux is appreciably larger than the diffusion flux, which also leads to larger values of
L. The smallest length Ly, for which significant electrification (I=0.1 L) is possible is estimated as Ly =
VORZ/p23D. For the values of vy, R, and D given above we have Ly, =25 cm. We note that in experiments [3]
the length of capillaries in which appreciable electrification was observed was 4-40 cm, which agrees with the
above estimate.

Thus, for low conductivity there is qualitative agreement of (3.1) with the experimental data of [3]. For a
quantitative test of (3.1) and qualitative agreement for high conductivities, further experimental research is
necessary to determine the components of the reaction (1.1), fo measure the reaction rate constants (equilib-
rium constants K), and to study the role of neutral impurities.
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INITIAL ASYMPTOTE TO THE SOLUTION
OF THE PROBLEM OF DROPLET INCIDENCE
ON A PLANE

A. A. Korobkin UDC 532.6 :532.581

The initial stage of collision of a spherical droplet on a solid plane is considered. 1t is assumed that the
droplet liquid is ideal and incompressible, and that surface tension and external mass forces are absent.

This problem is closely related to that of entry of a blunt body into a liquid, which was first considered in
[1]. The method for calculation of the resistive forces, developed in [1], is based on the assumption that the
velocity distribution on the free surface at each moment is the same as that obtained directly after collision
of a floating plate of the same dimensions.

These problems have the following unique features: 1) the flow region Q; is unknown; 2) the contact line
between free liquid surface and the solid must be determined at the boundary of the flow region; 3) singularities.
may appear in the solution on this line.

A new approach to problems of this kind is the introduction of Lagrangian coordinates [2, 3], in which the
flow region is fixed.

1. At time t=0 a liquid sphere of radius a is tangent upon a solid plane, which moves along the z axis at
velocity v. We must find the liquid motion which then occurs. In the space formed by Lagrangian Cartesian
coordinates ¢, i, { the region occupied by the liquid is known, being a sphere of radius ¢ with center at the
origin. We denote this region by ;. The variables x, y, z denote the corresponding Euler coordinates, I is
the free surface of the liquid, and X is the contact spot between droplet and solid plane. The Euler equations,
written in Lagrangian coordinates, have the form [3]

Myxy - % Vip =0, detM,=1in Q (1.1)

with boundary conditions p{r =0, z¢|y = v and initial conditions X|t=9= & Xg|t=0, Where x = (z, ¥, 2); § = (§, ,
0); My=0(x)/3(&); Mg is the matrix conjugate to M, and p is the pressure. The problem is a complex one be-
cause of its nonlinearity and the existence of the unknown line on the sphere boundary 82, dividing T" and Z.

2. We will linearize Eq. (1.1) for the initial rest state, keeping terms of zeroth- and first-order small-
ness in displacement. For the linearized problem we can introduce a displacement potential =%, 7, ¢, t),
which in view of the continuity equation, will be a function harmonic in €;. From the momentum equationfollows
that

p = —yDy, 2.1)
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